

Engineering

The Soil Moisture Active Passive Experiments: SMAPEx

<u>J. P. Walker</u>¹, X. Wu¹, Y. Gao¹, A. Monerris¹, R. Panciera², T. Jackson³, P. O'Neil⁴, N. Das⁵, D. Gray⁶, and D. Ryu⁷

¹Department of Civil Engineering, Monash University, Australia
²Cooperative Research Centre for Spatial Information, University of Melbourne, Australia
³United States Department of Agriculture (USDA), USA
⁴NASA/Goddard Space Flight Center, USA
⁵NASA/JPL, USA
⁶Department of Electrical and Electronic Engineering, University of Adelaide, Australia
⁷Department of Infrastructure Engineering, University of Melbourne, Australia

Acknowledgement: Australian Research Council DP0984586, LE0453434 and LE0882509

The Soil Moisture Active Passive mission

+

SMAP Specifications Launch: NASA, 2014 Frequency band: L-band Incidence angle: 40° Azimuth direction: conically-scanning antenna Resolution: Soil Moisture ~9km -- 36km radiometer + 3km radar Repeat: 2-3 days

Radiometer observation Radar observation ~36km MONASH University

~3km

=

Algorithms Active Passive Retrieval and Downscaling

Downscaled product ~9km

An Airborne Simulation of the SMAP Data Stream 2

Objectives

1. Radar-only soil moisture retrieval (3km)

Verify baseline algorithms proposed for SMAP

2. Radiometer-only soil moisture retrieval (36km)

Use the SMAP radar information on surface roughness and vegetation structure (3km) to aid the soil moisture retrieval from the SMAP radiometer (40km)

3. Active-Passive soil moisture product (9km)

Use the high resolution (3km) but noisy SMAP radar observations to downscale the accurate but low resolution (36km) radiometer footprint

DP0984586

Simulated fields of a) 3km truth soil moisture and retrieved soil moisture for b) 40km passive microwave observations, c) 3km radar observations and d) 3km merged passive microwave and radar observations (Zhan et al., 2006).

Airborne simulator

L-band radiometer (PLMR)

6 x Vis/NIR/SWIR/TIR

L-band radar (PLIS)

PLMR: Polarimetric L-band Multibeam Radiometer Frequency/bandwidth: 1.413GHz/24MHz Polarisations: V and H Resolution: ~1km at 10,000ft flying height, Incidence angles: ±7, ±21.5, ±38.5° across track Antenna type: 8 x8 patch array

LE0453434

PLIS: Polarimetric L-band Imaging SAR Frequency/bandwidth:1.26GHz/30MHz Polarisations: VV, VH, HV and HH Resolution: ~10m Inc. angles 15° -45° on both sides of aircraft Antenna type: 2x2 patch array

LE0882509

Motivation

Pre-launch active-passive algorithm validation largely based on synthetic studies & few airborne data sets

Simulation of SMAP data

Study site

Flights

Regional flight, Target flights, Transect flight;

Multi-angle flights and multi-azimuth flights

Soil Moisture Active Passive Experiments (SMAPEx)

Location: Yanco, Murrumbidgee Catchment, NSW; Field campaigns: SMAPEx-1 (5th-10th July 2010) SMAPEx-2 (4th-8th Dec 2010) SMAPEx-3 (5th-23rd Sept 2011)

Target flights

at 3,000m altitude

Multi-azimuth and multi-resolution flights

both at 1,500m altitude

Calibration

- A single set of calibration solutions for PLIS have been derived for each campaign based on daily calibration flights
- Absolute calibration accuracy for PLIS based on the PRCs from SMAPEx-3 is ~0.93dB
- Relative calibration (start and end of the flight) accuracy for PLIS is ~0.8dB
- The calibration procedure for PLMR is mature and is accurate to ~2K

Flight line Swath

Ground soil moisture

www.smapex.monas.edu.au

Welcome to the

SMAPEx Project

Soil Moisture Active Passive Experiment

Project Overview

Real time information on soil moisture variability at high resolution is vital for sustainable land and water management. NASA's next generation soil moisture dedicated mission. Soil Moisture Active Passive (SMAP), will provide this information though the synergy of L-band (1.4GHz) active (radar) land passive (radiometer) microwave observations. The Soil Moisture Active Passive Experiments (SMAPEx) consist a series of three field experiments specifically designed to contribute to the development of soil moisture retrieval algorithms from radar and radiometer for the SMAP mission. The SMAPEx experiments are currently the only pre-launch SMAP validation campaigns planned for Australia.

SMAPEx has utilized airborne radar and radiometer data to replicate the SMAP configuration in terms of frequency, viewing angle and resolution ratio. The main instruments flown are the Polarimetric L-band Multibeam Radiometer (PLMR) and the Polarimetric L-band Imaging Scatterometer (PLIS), with additional thermal infrared radiometer and multispectral sensors for monitoring of vegetation properties and surface temperature. SMAPEx has been undertaken in the "Yanco" study area, a semi-arid agricultural area in the Murrumbidgee catchment, south-eastern Australia. The main flights include coverage of a 36km x 38km area, equivalent to a SMAP radiometer pixel, with a 2-3 days "revisit" time to simulate SMAP observations both in spatial and temporal resolution. These airborne observations were undertaken at approximately 3000m (AGL) altitude to provide radiometer and radar data and derived coil moisture content at respectively. Here and 10,30m. Appillary flights

Normalization to 40° for PLIS

Normalization to 40° for PLIS

Note: The CDFs used in this study are from small sample sizes. Results may be improved by using a larger sample of data.

Normalization to 40° for PLIS

Normalization to 40° for PLMR

Normalization to 40° for PLMR

Azimuth effect for PLIS

17

Azimuth effect for PLIS

器 MONASH University

Azimuth effect for PLMR

Upscaling for PLIS

MONASH University

Upscaling for PLMR

Panciera, Walker et al. (2009), RSE

Example of simulated data

(Data collected on 7th Sept. 2011)

Baseline downscaling algorithm for SMAP

 Near-linear relationship between Radar backscatter and Brightness Temperature (ATBD, algorithm for SMAP mission)

See Poster by Wu et al. tomorrow

MONASH University

Active-passive downscaling results

	D2		D5		D9		Average		
Pol.	Н	V	Н	V	Н	V	Н	V	
1km	12.2	9.6	10.8	8.3	10.3	7.8	11.1	8.5	
	11.4	9.4	9.6	8.0	8.6	7.2	9.8	8.2	
3km	9.4	7.4	7.1	5.3	6.4	4.5	7.6	5.7	
	9.0	7.3	6.5	5.2	5.2	4.3	6.9	5.6	
9km	6.7	5.8	4.3	3.3	3.5	2.3	4.8	3.8	
	7.1	6.3	4.0	3.3	2.5	1.9	4.5	3.8	

- Results on V-pol are better than H-pol
- Improvement by including vegetation conditions

Passive microwave soil moisture retrieval

MONASH University

- SMAPEx-1 and SMAPEx-2 target pixels (100m)
- Retrieval using default model parameters
- Pixels with VWC sampled at exactly the same location

Passive microwave soil moisture retrieval

Active microwave VWC retrieval

MONASH University

Active microwave soil moisture retrieval

Future work

- Try and eliminate any angle normalisation contributions to the azimuth and scaling results and assess georegistration contributions
- Undertake soil moisture retrievals from 1km PLMR (passive only), validated with higher resolution PLMR data and ground observations, for evaluation of SMAP soil moisture retrieval algorithms based on simulated SMAP data
- Testing of SMAP default radiometer parameters
- Testing of SMAP radar baseline algorithms
- Testing of alternate active-passive downscaling algorithms; there is about 4K downscaling error in the current baseline algorithm

WELCOME TO MELBOURNE, AUSTRALIA for IEEE IGARSS 2013 21 – 26 July 2013

www.igarss2013.org

